ФИЗИКА В ТАБЛИЦАХ

7—11 классы

Справочные материалы

УДК 373:53(083.4) ББК 22.3я721 Ф50

Серия основана в 2003 году

Оформление — дизайн-группа «Дикобраз»

Физика в таблицах: 7—11-й классы: справоч-Ф50 ные материалы. — Москва: Астрель, 2015. — 190, [2] с. — (Школьная программа). ISBN 978-5-17-034943-2 (000 «Издательство АСТ») (Жёлт.)

ISBN 978-5-17-034943-2 (ООО «Издательство АСТ») (Жёлт.) ISBN 978-5-271-13487-6 (ООО «Издательство Астрель») (Жёлт.) ISBN 978-5-17-082720-6 (ООО «Издательство АСТ») (ЕГЭ) ISBN 978-5-271-46809-4 (ООО «Издательство АСтрель») (ЕГЭ)

Пособие содержит таблицы по всем разделам школьного курса физики, где кратко изложена теория по каждой теме, приведены основные формулы и графики.

Пособие полезно учащимся $7{-}11$ классов, абитуриентам, студентам и учителям.

УДК 373:53(083.4) ББК 22.3я721

ISBN 978-5-17-034943-2 (ООО «ИЗДАТЕЛЬСТВО АСТ») (ЖЁЛТ.) ISBN 978-5-271-13487-6 (ООО «ИЗДАТЕЛЬСТВО АСТРЕЛЬ») (ЖЁЛТ.) ISBN 978-5-17-082720-6 (ООО «ИЗДАТЕЛЬСТВО АСТ») (ЕГЭ) ISBN 978-5-271-46809-4 (ООО «ИЗДАТЕЛЬСТВО АСТРЕЛЬ») (ЕГЭ)

содержание

МЕХАНИКА

Кинематика

Табл. 1. Основные понятия кинематики	11
Табл. 2. Равномерное прямолинейное	
движение	14
Табл. 3. Равнопеременное прямолинейное	
движение	15
Табл. 4. Движение тела вблизи поверхности	
Земли	17
Табл. 5. Движение по окружности	
с постоянной по модулю скоростью	19
Табл. 6. Относительность движения	21
Динамика	
Д инамика <i>Табл.</i> 7. Сила. Масса	23
• •	23 24
Табл. 7. Сила. Масса	
Табл. 7. Сила. Масса Табл. 8. Законы Ньютона	24
Табл. 7. Сила. Масса. Табл. 8. Законы Ньютона. Табл. 9. Силы в механике.	24
Табл. 7. Сила. Масса. Табл. 8. Законы Ньютона. Табл. 9. Силы в механике. Табл. 10. Динамика движения материальной точки по окружности	24 26
Табл. 7. Сила. Масса. Табл. 8. Законы Ньютона. Табл. 9. Силы в механике. Табл. 10. Динамика движения материальной точки по окружности Законы сохранения	24 26 31
Табл. 7. Сила. Масса. Табл. 8. Законы Ньютона. Табл. 9. Силы в механике. Табл. 10. Динамика движения материальной точки по окружности	24 26
Табл. 7. Сила. Масса. Табл. 8. Законы Ньютона. Табл. 9. Силы в механике. Табл. 10. Динамика движения материальной точки по окружности Законы сохранения	24 26 31

Табл. 13. Механическая энергия	39
Табл. 14. Столкновение тел	42
Статика. Гидростатика. Гидродинамика	
<i>Табл. 15.</i> Статика	44
Табл. 16. Гидростатика	46
Табл. 17. Гидродинамика	49
МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА	
Молекулярно-кинетическая теория (МКТ)	ı
Табл. 18. Основные положения МКТ	
строения вещества	52
Табл. 19. Основное уравнение МКТ газов.	
Уравнение состояния идеального газа	54
Табл. 20. Изопроцессы в газах	56
Табл. 21. Поверхностное натяжение	
в жидкостях	59
Изменение агрегатного состояния веществ	за
Табл. 22. Внутренняя энергия. Работа	
в термодинамике. Количество теплоты	62
Табл. 23. Первое начало термодинамики	65
Табл. 24. Второе начало термодинамики	66
Табл. 25. Тепловые двигатели	67
Табл. 26. Взаимные превращения газов,	
жидкостей и твердых тел	68
Табл. 27. Влажность воздуха	70
4	

ЭЛЕКТРОДИНАМИКА

Электростатика точечных зарядов	
Табл. 28. Закон сохранения электрического	
заряда	72
Табл. 29. Закон Кулона. Напряженность	
электрического поля	73
Табл. 30. Работа сил электрического поля.	
Потенциал	75
Проводники и диэлектрики в электрическом поле. Электроемкость	
Табл. 31. Проводники в электрическом	
поле	78
Табл. 32. Диэлектрики в электрическом	
поле	79
Табл. 33. Электроемкость. Конденсаторы	81
Постоянный электрический ток	
Табл. 34. Электрический ток	84
Табл. 35. Сила и плотность тока	85
Табл. 36. Закон Ома для однородного участка	
цепи	85
Табл. 37. Последовательное и параллельное	
соединения проводников	87
Тепловое действие тока	
Табл. 38. Работа и мощность тока.	
Закон Джоуля — Ленца	89
Табл. 39. Электродвижущая сила	89

Табл. 40. Закон Ома для неоднородного	
участка цепи	90
Табл. 41. Закон Ома для полной цепи	91
Табл. 42. Работа и мощность тока	
в замкнутой цепи	92
Электрический ток	
в различных средах	
Табл. 43. Электрический ток	
в металлах	93
Табл. 44. Электрический ток	
в электролитах	94
Табл. 45. Электрический ток в газах	96
Табл. 46. Электрический ток	
в полупроводниках	98
$\it Taбл.~47$. Электрический ток в вакууме	99
Магнитное поле	
Табл. 48. Магнитное взаимодействие	100
Табл. 49. Графическое изображение	
магнитного поля	103
Табл. 50. Сила Лоренца	104
Табл. 51. Движение заряженных частиц	
в магнитном поле	105
Электромагнитная индукция	
Табл. 52. Явление электромагнитной	
индукции	106
Табл. 53. Самоиндукция	109
Табл. 54. Взаимная индукция	111

КОЛЕБАНИЯ И ВОЛНЫ

Механические колебания

Табл. 55. Общие свойства колебательных	
систем	112
Табл. 56. Свободные колебания	115
Табл. 57. Пружинный маятник	116
Табл. 58. Математический маятник	117
Табл. 59. Вынужденные колебания	119
Механические волны	
Табл. 60. Общие свойства механических	
волн	120
Табл. 61. Классификация волн	122
Табл. 62. Звук	124
Электромагнитные колебания	
Электромагнитные колебания <i>Табл. 63.</i> Свободные электромагнитные	
·	125
. <i>Табл. 63.</i> Свободные электромагнитные	125
Табл. 63. Свободные электромагнитные колебания	125 128
Tабл. 63 . Свободные электромагнитные колебания	
Табл. 63. Свободные электромагнитные колебания	
$Taбл.\ 63.$ Свободные электромагнитные колебания	128 128
$Taбл.\ 63.$ Свободные электромагнитные колебания	128
Табл. 63. Свободные электромагнитные колебания	128 128 130
Табл. 63. Свободные электромагнитные колебания	128 128
Табл. 63. Свободные электромагнитные колебания	128 128 130

Электромагнитные волны

Табл. 69. Электромагнитные волны	132
ОПТИКА	
Геометрическая оптика	
Табл. 70. Основные понятия геометрической	
оптики	135
Табл. 71. Законы геометрической оптики	136
Табл. 72. Изображение в плоском зеркале	138
Табл. 73. Преломление света	
в плоскопараллельной пластине	139
Табл. 74. Преломление света	
в треугольной призме	139
Табл. 75. Тонкая линза	140
Табл. 76. Построение изображения точки	
в линзе	142
T a б π . 77. Формула тонкой линзы	143
Табл. 78. Построение изображения предмета	
в линзе	144
Волновая оптика	
Табл. 79. Основные понятия волновой	
оптики	146
Табл. 80. Дисперсия света.	
Интерференция света	147
Табл. 81. Дифракция света	148
Табл. 82. Дифракционная решетка	149
Табл. 83. Поляризация света	150
8	

ЭЛЕМЕНТЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Tабл. 84. Постулаты теории относительности 152 Tабл. 85. Релятивистская динамика 155

КВАНТОВАЯ ФИЗИКА	
Световые кванты	
Табл. 86. Корпускулярно-волновой	
дуализм света	156
<i>Табл.</i> 87. Фотоэффект	157
Атомная физика	
Табл. 88. Спектры. Спектральный анализ	160
Табл. 89. Строение атома	161
$\it Taбл.~90.$ Модель атома водорода по Бору	163
Элементарные частицы	
Табл. 91. Состав атомного ядра	164
Табл. 92. Энергия связи ядра	165
Табл. 93. Ядерные силы	166
Табл. 94. Радиоактивность	167
Табл. 95. Ядерные реакции	168
Табл. 96. Биологическое действие	
радиоактивного излучения	169
Табл. 97. Элементарные частицы	170
Табл. 98. Типы взаимодействий между	
элементарными частицами	172
	0

приложения

1. Множители и приставки для образования	
десятичных кратных и дольных единиц и их	
наименования	174
2. Некоторые внесистемные	
единицы	175
3. Фундаментальные	
физические постоянные	176
4. Сведения о Земле, Солнце	
и Луне	177
5. Физические величины и их единицы в СИ	178
6. Греческий алфавит	191

МЕХАНИКА

КИНЕМАТИКА

Таблица 1

Основные понятия кинематики

Механиче- ское движе- ние	Изменение положения в пространстве одних тел по отношению к другим с течением времени
Система отсчета	Совокупность тела отсчета и связанной с ним системы координат, а также часов
Материаль- ная точка	Тело, размерами которого можно пренебречь в условиях конкретной задачи (идеальная модель)
Траектория	Линия, вдоль которой движется тело
$Pa\partial uyc$ -век- $mop\ r,$ $[r]=1\ { m M}$	Вектор, проведенный из начала координат в ту точку, где находится тело (рис. 1) $\vec{r} = x \vec{i} + y \vec{j} + z \vec{k} ,$ $r = \vec{r} = \sqrt{x^2 + y^2 + z^2}$

Π ройденный $nymb~l, \ [l]=1$ м	Длина дуги траектории, пройденной телом за время t
Вектор перемещения (перемеще- ние) \vec{s} , [s] = 1 м	Вектор, проведенный из точки, где в начальный момент находилось тело, в точку, где оно находится в момент времени t (см. рис. 1) $\vec{s} = \Delta \vec{r} = \vec{r} - \vec{r}_0$ $s_x = \Delta x = x - x_0$ $s_y = \Delta y = y - y_0$ $s_z = \Delta z = z - z_0$ $s = \vec{s} = \sqrt{s_x^2 + s_y^2 + s_z^2} =$ $= \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}$
Вектор $ cpe \partial нe \ddot{u} \\ cкорости \ \vec{v}_{\rm cp}, \\ [v_{\rm cp}] = 1 \ {\rm m/c} $	Отношение вектора перемещения материальной точки за интервал времени Δt к этому интервалу времени $\vec{v}_{\rm cp} = \frac{\Delta \vec{r}}{\Delta t}$

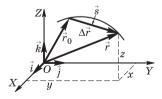


Рис. 1. Движение материальной точки в пространстве

	1
Средняя пу-	Отношение пройденного за ин-
тевая ско-	тервал времени Δt отрезка пути
$pocmь v_c$,	к указанному интервалу времени
$[v_{\rm cp}] = 1 \text{ m/c}$	$v_{ m cp}=rac{l}{\Delta t}$
Мгновенная	Предел, к которому стремится
скорость v,	средняя скорость за бесконечно
[v] = 1 m/c	малый промежуток времени Δt
	$\vec{v} = \frac{d\vec{r}}{dt} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$
	$v_x = \frac{dx}{dt}$; $v_y = \frac{dy}{dt}$; $v_z = \frac{dz}{dt}$
	$v = \frac{ d\vec{r} }{dt} = \frac{ds}{dt}$
	$v = \vec{v} = \sqrt{v_x^2 + v_y^2 + v_z^2}$
Вектор сред-	Отношение изменения скорости
него ускоре-	$\Delta \vec{v}$ к интервалу времени Δt , за ко-
ния \vec{a}_{cp} ,	торый произошло изменение ско-
$[\vec{a}_{\mathrm{cp}}] = 1 \text{ M/c}^2$	рости
СР	$\vec{a}_{ m cp} = rac{\Delta \vec{v}}{\Delta t}$
Мгновенное	Предел отношения изменения ско-
ускорение	рости $\Delta \vec{v}$ к малому промежутку
\vec{a} , $[\vec{a}] = 1 \text{ m/c}^2$	времени Δt , в течение которого
	происходило это изменение
	$\vec{a} = \frac{d\vec{v}}{dt} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$
	$a_x = \frac{dv_x}{dt}; \ a_y = \frac{dv_y}{dt}; \ a_z = \frac{dv_z}{dt}$
	$a = \vec{a} = \sqrt{a_x^2 + a_y^2 + a_z^2}$

Равномерное прямолинейное движение

Равномерное пря- молинейное движе- ние	Движение по прямолинейной траектории, при котором тело за любые равные промежутки времени проходит равные пути
Кинематические уравнения равно- мерного прямоли- нейного движения	$\vec{a} = \text{const} = 0$ $\vec{v} = \vec{v}_0 = \text{const}$ $\vec{r} = \vec{r}_0 + \vec{v}_0 t$ $\vec{s} = \Delta \vec{r} = \vec{r} - \vec{r}_0 = \vec{v}_0 t$
Проекции кинема- тических уравне- ний на ось OX , параллельную век- тору начальной скорости \vec{v}_0	$a_x = \text{const} = 0$ $v_x = v_{0x} = \text{const}$ $x = x_0 + v_x t$ $s_x = \Delta x = x - x_0 = v_x t$ $s = x - x_0 = v_x t = vt$
Графики зависимости от времени при равномерном прямолинейном движении:	
— nymu s	$ \begin{array}{c} $

Окончание табл. 2

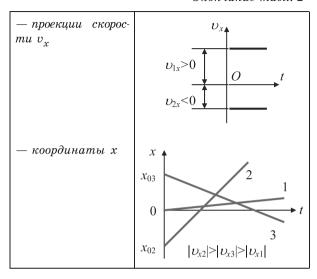


Таблица 3

Равнопеременное прямолинейное движение

Равнопеременное прямолинейное движение	Движение по прямолинейной траектории с постоянным по модулю и направлению ускорением
Кинематические уравнения равно- переменного пря- молинейного дви- жения	$ \vec{a} = \text{const}, \qquad \vec{v} = \vec{v}_0 + \vec{a}t $ $ \vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{\vec{a}t^2}{2} $ $ \vec{s} = \Delta \vec{r} = \vec{r} - \vec{r}_0 = \vec{v}_0 t + \frac{\vec{a}t^2}{2} $