

Алгоритм успеха

Л.С. Хижнякова А.А. Синявина

9 класс

Учебник для учащихся общеобразовательных организаций

Рекомендовано Министерством образования и науки Российской Федерации

2-е издание, стереотипное

Москва Издательский центр «Вентана-Граф» 2016

Учебник включён в Федеральный перечень

Хижнякова Л.С.

X43 Физика : 9 класс : учебник для учащихся общеобразовательных организаций / Л.С. Хижнякова, А.А. Синявина. — 2-е изд., стереотип. — М. : Вентана-Граф, 2016. - 304 с. : ил.

ISBN 978-5-360-06910-2

Настоящее издание завершает линию учебников Л.С. Хижняковой и А.А. Синявиной «Физика. 7 класс» и «Физика. 8 класс» для учащихся общеобразовательных организаций.

Учебник вместе с рабочими тетрадями, тетрадью для лабораторных работ и методическим пособием для учителей входит в учебно-методический комплект по физике для 9 класса. Комплект является частью системы «Алгоритм успеха».

Соответствует Федеральному государственному образовательному стандарту основного общего образования (2010 г.).

ББК 22.3я721

Условные обозначения

Задания для повторения

Задания творческого характера

🗱 Материал для дополнительного изучения

Названия параграфов, предназначенных для дополнительного изучения, выделены цветом

Учебное издание

Хижнякова Людмила Степановна **Синявина** Анна Афанасьевна

Физика

9 класс

Учебник для учащихся общеобразовательных организаций

Подписано в печать 09.03.16. Формат 70×90/16. Гарнитура NewBaskervilleC Бумага офсетная № 1. Печать офсетная. Печ. л. 19,0. Тираж 2000 экз. Заказ №

ООО Издательский центр «Вентана-Граф». 127422, Москва, ул. Тимирязевская, д. 1, стр. 3 Тел./факс: (499) 641-55-29, (495) 234-07-53. E-mail: info@vgf.ru, http://www.vgf.ru

[©] Хижнякова Л.С., Синявина А.А., 2012

Глава 1

Методы изучения механического движения и взаимодействия тел

Изучение курса физики 9 класса мы начнём с рассмотрения механических явлений. Это неслучайно, так как классическая механика — первая физическая теория, сложившаяся ещё в XVII в. Методы, получившие развитие в рамках этой теории, с успехом используются при объяснении явлений и законов, которые изучают в других разделах физики.

К основным методам исследования физических явлений относится метод координат, представляющий собой правила, способы действий с векторными и скалярными физическими величинами в заданных системах отсчёта.

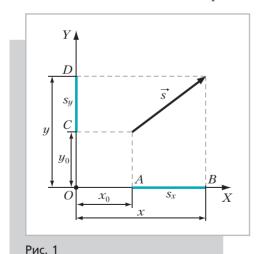
В XVII в. французский физик и математик Рене Декарт (1596–1650) ввёл правило выбора знаков в прямоугольной системе координат. Это позволило определять положение движущегося тела в системе отсчёта. Совокупность системы координат и часов, связанных с телом отсчёта, называют системой отсчёта.

Используя метод координат и законы механики, рассчитывают, например, движение воздушных судов и ракет, траектории заряженных частиц в электромагнитном поле, оценивают расстояния между галактиками Вселенной и т. д.

§ **1.** Методы описания механического движения. Векторные и скалярные физические величины

Механическое движение — это изменение положения тела относительно других тел с течением времени.

Поскольку положение тела (материальной точки) в любой момент времени определяется координатами, то для изучения механического движения необходимо выбрать определённую систему отсчёта.


Вы знаете, что между физическими величинами существуют определённые функциональные зависимости. С помощью координатного метода их можно выразить разными способами, например в виде уравнений (формул) и графиков.

Рассмотрим примеры использования координатного метода для исследования механического движения с помощью уравнений, графиков.

Основные величины, характеризующие механическое движение тел, — перемещение, скорость и ускорение. Эти величины являются векторными. К скалярным величинам относятся время, путь, модули физических величин, проекции векторных величин на координатные оси.

Перемещением тела (материальной точки) называют направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением.

Пусть тело совершило перемещение \vec{s} в системе отсчёта XOY (рис. 1). Начальное положение тела определяется координатами x_0 и y_0 , а конечное

ные оси X и Y. Из рисунка следует: $s_x = x - x_0, \tag{1}$ $s_y = y - y_0. \tag{2}$

Таким образом, проекция вектора перемещения \vec{s} на координатную ось X или Y равна разности конечной и начальной координат тела x и y.

положение — координатами x и y. Длину отрезка AB, равную $x - x_0$,

и длину отрезка CD, равную $y - y_0$, называют *проекциями* s_x и s_u векто-

ра перемещения \vec{s} на координат-

Данный вывод можно сформулировать иначе: $npoekuuu\ s_x\ u\ s_y\ век$

тора перемещения \vec{s} на координатные оси X и Y равны изменению координат тела x и y.

Из формул (1) и (2) можно найти конечные координаты x и y тела:

$$x = x_0 + s_x,\tag{3}$$

$$y = y_0 + s_y. (4)$$

Из формул (3) и (4) следует вывод: чтобы определить положение тела в заданной системе отсчёта, необходимо знать проекции его перемещения на координатные оси и начальные координаты тела. Отметим, что данные формулы справедливы при любом другом расположении вектора перемещения на плоскости XOY.

Проекция векторной физической величины — скалярная величина, которая может иметь знак «+» или «-». Существует следующее правило определения знака проекции векторной величины.

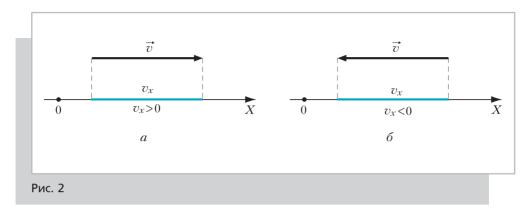
Проекцию считают положительной, если направление от проекции начала к проекции конца вектора совпадает с положительным направлением координатной оси, в противном случае — отрицательной.

Например, проекции s_r и s_u (см. рис. 1) положительны.

Предположим, что тело (материальная точка) двигалось равномерно и прямолинейно и совершило перемещение \vec{s} за промежуток времени, равный Δt .

Скоростью равномерного прямолинейного движения называют постоянную векторную величину, равную отношению перемещения тела за любой промежуток времени к значению этого промежутка.

$$\vec{v} = \frac{\vec{s}}{\Delta t}$$
.

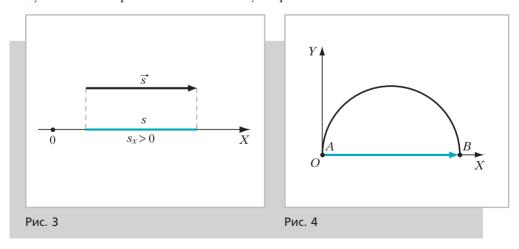

Из формулы определения скорости равномерного прямолинейного движения (при $t_0=0$) следует: $\vec{s}=\vec{v}\cdot t$. Тогда формула проекции вектора перемещения на ось X имеет вид: $s_x=v_x\cdot t$. Запишем уравнение равномерного прямолинейного движения тела в случае его перемещения вдоль оси X:

$$x = x_0 + v_x \cdot t.$$

При этом проекция вектора перемещения, а следовательно и вектора скорости, может быть как положительной (рис. 2, a), так и отрицательной (рис. 2, δ). С учётом этого уравнение равномерного прямолинейного движения тела в проекциях на ось X имеет вид: $x = x_0 + v \cdot t$ или $x = x_0 - v \cdot t$.

Сравним две физические величины – перемещение и пройденный путь.

Длину траектории, по которой движется тело (материальная точка) в течение некоторого промежутка времени, называют путём, пройденным за этот промежуток времени.


Путь — скалярная величина, характеризующая длину линии, которую описывает движущаяся материальная точка, т. е. длину траектории.

Если тело двигалось всё время в одном направлении вдоль оси X, модуль вектора перемещения \vec{s} и его проекция s_x на координатную ось X равны длине пройденного пути AB (рис. 3).

Пусть велосипедист движется из точки A велотрека в точку B по дуге (рис. 4). Длина пути, пройденного велосипедистом, равна длине дуги, а его перемещение равно \overline{AB} . В данном случае пройденный телом путь и модуль перемещения тела не равны.

Движение тела, при котором его скорость за любые равные промежутки времени изменяется одинаково, называют равноускоренным.

В случае равноускоренного прямолинейного движения постоянным по модулю и по направлению является ускорение.

Ускорением тела при равноускоренном прямолинейном движении называют векторную величину, равную отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

$$\vec{a} = \frac{\vec{v} - \vec{v}_0}{\Delta t}.$$

Из формулы определения ускорения следует, что скорость тела при равноускоренном прямолинейном движении равна $\vec{v} = \vec{v}_0 + \vec{a} \cdot \Delta t$. Если начальный момент времени принять равным нулю $(t_0 = 0)$, то $\Delta t = t - t_0 = t$. Тогда уравнение для скорости равноускоренного прямолинейного движения тела имеет вид:

$$\vec{v} = \vec{v}_0 + \vec{a} \cdot t$$
.

Запишем его в проекциях на ось
$$X: v_r = v_{0r} + a_r \cdot t$$
. (5)

Равноускоренное прямолинейное движение обладает важным свойством: средняя скорость тела равна среднему арифметическому значению скоростей в начале и в конце перемещения:

$$\vec{v}_{\rm cp} = \frac{\vec{v}_0 + \vec{v}}{2}.$$

Запишем эту формулу в проекциях на ось X:

$$v_{\rm cp\,x} = \frac{v_{0x} + v_x}{2} \ . \tag{6}$$

Из формулы определения средней скорости неравномерного движения $\vec{v}_{\rm cp} = \frac{\vec{s}}{t}$ следует $\vec{s} = \vec{v}_{\rm cp} \cdot t$. Запишем это уравнение в проекциях на ось X:

$$S_x = V_{\text{cp} x} \cdot t. \tag{7}$$

Подставим в выражение (7) формулы (5) и (6) и, проведя необходимые преобразования, получим:

$$s_x = \frac{v_{0x} + v_x}{2} \cdot t = \frac{v_{0x} + (v_{0x} + a_x \cdot t)}{2} \cdot t = v_{0x} \cdot t + \frac{a_x \cdot t^2}{2}.$$

Учитывая, что координата и проекция перемещения тела связаны соотношением $x = x_0 + s_x$, запишем для равноускоренного прямолинейного движения уравнения координаты и скорости тела в проекциях на ось X:

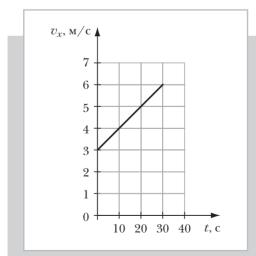
$$x = x_0 + v_{0x} \cdot t + \frac{a_x \cdot t^2}{2} \,, \tag{8}$$

$$v_r = v_{0r} + a_r \cdot t. \tag{9}$$

Если начальная координата тела x_0 и проекция v_{0x} его начальной скорости равны нулю, то уравнения (8) и (9) принимают вид:

$$x = \frac{a_x \cdot t^2}{2},$$

$$v_x = a_x \cdot t.$$


Отсюда следует, что с увеличением времени движения в 2 раза скорость тела также увеличивается в 2 раза, а его координата — в 4 раза. Следовательно, координата тела меняется со временем по квадратичному закону, а скорость — по линейному.

Зависимости $v_x = v_{0x} + a_x \cdot t$ и $x = x_0 + v_x \cdot t$ представляют собой линейные функции. Из курса математики вам известно, что графиком линейной функции является прямая линия.

На рис. 5 приведён график зависимости проекции v_x скорости равноускоренного прямолинейного движения от времени t. График данной функции — прямая линия, проходящая через точку с координатами (0 c; 0 м/c) и точку с координатами (30 c; 6 м/c). Из графика следует, что проекция скорости v_x возрастает от 0 до 6 м/c.

Найдём проекцию ускорения a_x тела по формуле: $a_x = \frac{\Delta v_x}{\Delta t}$. Используя рис. 5, получим:

$$a = \frac{6 \text{ m/c} - 3 \text{ m/c}}{30 \text{ c} - 0} = 0.1 \text{ m/c}^2.$$

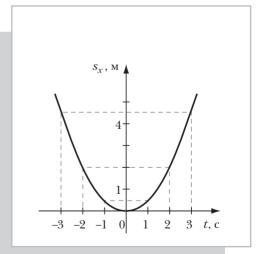


Рис. 5

Рис. 6

Наряду с графиком проекции скорости равноускоренного прямолинейного движения используют график зависимости проекции s_x перемещения тела от времени t. Из курса математики вы знаете, что график функции $s_x = \frac{a_x \cdot t^2}{2}$ представляет собой параболу (рис. 6). Его получают, откладывая по оси ординат проекцию перемещения s_x , а по оси абсцисс — время t.

Зная проекцию перемещения тела и время его движения, из формулы $s_x=\frac{a_x\cdot t^2}{2}$ определим проекцию ускорения, которая равна 1 м/с². Тогда уравнение проекции перемещения тела имеет вид: $s_x=0.5\cdot t^2$, где все величины выражены в единицах СИ.

В таблице 1 приведена определённая система действий (алгоритм) при решении подобных задач по кинематике.

Таблица 1

Номер действия	Алгоритм решения задач по кинематике
1	Выбрать систему отсчёта
2	Построить и проанализировать график движения
3	Записать уравнения движения с учётом знаков проекций векторных величин
4	Определить искомую физическую величину
5	Подставить числовые данные и записать ответ

Итак, метод координат — один из основных математических методов изучения физических явлений. Он позволяет выражать функциональные зависимости между физическими величинами посредством уравнений (формул), графиков.

Теоретическое исследование

Найти модуль перемещения тела (материальной точки) при равноускоренном прямолинейном движении можно и в том случае, когда неизвестно время движения. Используя уравнения $v_x = v_{0x} + a_x \cdot t$

и
$$s_x=rac{v_{0x}+v_x}{2}\cdot t$$
, получите для проекции перемещения тела следующую формулу: $s_x=rac{v_x^2-v_{0x}^2}{2\cdot a_x}$.

Вопросы

- Как используется метод координат при описании механического движения?
- 2. Назовите векторные физические величины, характеризующие механическое движение тел.
- **3.** Как определяются проекции вектора перемещения s_x и s_y на координатные оси X и Y?
- **4.** Сформулируйте правило определения знака проекции векторной величины.
- 5. В каком случае пройденный телом путь равен модулю его перемещения?
- **6.** Запишите уравнение для координаты тела при равномерном прямолинейном движении, если оно перемещается вдоль положительного направления оси X.
- 7. По какой формуле можно определить модуль перемещения тела при равноускоренном прямолинейном движении?
- **8.** Приведите пример линейной функции, характеризующей связи между физическими величинами.
- 9. Что представляет собой график зависимости проекции перемещения тела от времени при равноускоренном прямолинейном движении?

Пример решения задачи

На рис. 7 изображены графики зависимости проекции скорости движения от времени для трёх тел. Используя графики, определите:

- а) проекции начальной скорости тел;
- б) проекции ускорения тел;
- в) направление движения тел;
- г) уравнения движения, если начальная координата у всех тел одинакова и равна 100 м;
- д) уравнения проекций перемещения тел.

Решение. График 1 — график зависимости проекции скорости от времени при равноускоренном прямолинейном движении тела с возрастающей по модулю скоростью. Проекция начальной скорости тела $v_{0x}=3$ м/с, проекция его ускорения $a_x=3$ м/с². Тело движется в положительном направлении координатной оси X. Уравнение равноускоренного прямолинейного движения тела: $x_1=100+3\cdot t+1,5\cdot t^2$.

Проекция перемещения тела $s_{1x} = 3 \cdot t + 1, 5 \cdot t^2$.

График 2 — график зависимости проекции скорости равномерного прямолинейного движения тела от времени. Графиком является прямая, параллельная координатной оси X и проходящая через точку (0 с; 3 м/с). Проекция начальной скорости $v_x=3$ м/с, проекция его ускорения $a_r = 0$. Тело движется в положительном направлении координатной оси X. Уравнение равномерного прямолинейного движения тела: $x_9 = 100 + 3 \cdot t$. Проекция перемещения тела $s_{9x} = 3 \cdot t$.

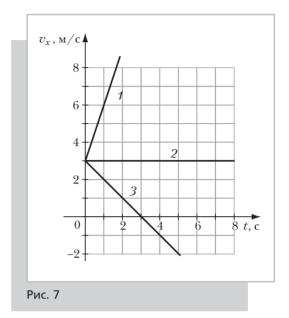
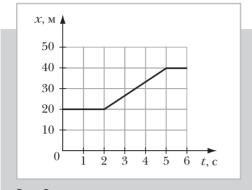



График 3 — график зависимости проекции скорости от времени при равноускоренном прямолинейном движении тела. Направление движения тела противоположно направлению координатной оси X. Проекция начальной скорости тела $v_{0x}=3$ м/с, проекция его ускорения $a_x=-1$ м/с². Уравнение равноускоренного прямолинейного движения тела: $x_3=100+3\cdot t-0.5\cdot t^2$. Проекция перемещения тела $s_{3x}=3\cdot t-0.5\cdot t^2$. Ответ. Все тела начинают двигаться с одинаковой начальной скоростью, модуль которой равен 3 м/с. Тела 1 и 3 движутся равноускоренно, проекции их ускорения равны соответственно 3 и -1 м/с². Тела 1 и 2 движутся в положительном направлении координатной оси X, тело 3 — в противоположном направлении. Уравнения движения тел имеют вид: $x_1=100+3\cdot t+1.5\cdot t^2$, $x_2=100+3\cdot t$, $x_3=100+3\cdot t-0.5\cdot t^2$. Уравнения проекций перемещения тел: $s_{1x}=3\cdot t+1.5\cdot t^2$, $s_{2x}=3\cdot t$, $s_{3x}=3\cdot t-0.5\cdot t^2$.

Задания и упражнения

1. На рис. 8 изображён график зависимости координаты тела от времени. Чему равны: а) координата перемещения тела в момент времени t=5 с; б) модуль скорости движения тела? В какой интервал времени координату x можно определить по формуле: $x=x_0+v_x\cdot t$?

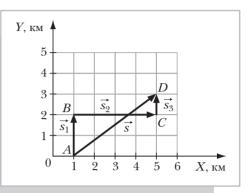
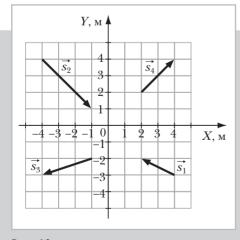



Рис. 8

Рис. 9

- **2.** На рис. 9 показаны векторы перемещения велосипедиста из точки A в точку B, из точки B в точку C, из точки C в точку D. Покажите, что проекция суммы векторов перемещения на координатную ось равна алгебраической сумме проекций складываемых векторов на ту же ось, т. е. $s_x = s_{1x} + s_{2x} + s_{3x}$, $s_y = s_{1y} + s_{2y} + s_{3y}$. Длина наименьшего отрезка перемещения соответствует 1 км.
- **3.** На рис. 10 показаны векторы перемещения четырёх тел из начального положения в конечное. Определите: а) координаты каждого из этих тел в начальный и конечный моменты времени; б) проекции перемещений на координатные оси X и Y.

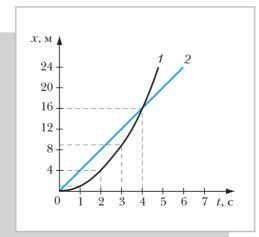


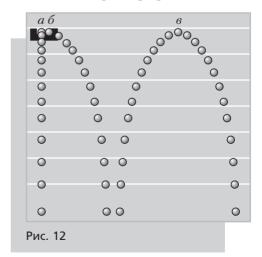
Рис. 10

Рис. 11

- **4.** Уравнение для координаты тела при равноускоренном прямолинейном движении имеет вид: $x=1+t-t^2$, где все величины выражены в единицах СИ. Чему равны: а) начальная координата x_0 ; б) проекция начальной скорости v_{0x} ; в) проекция ускорения a_x ?
- 5. На рис. 11 изображены графики 1,2 зависимости координаты x от времени t для двух тел. График 1 представляет собой ветвь параболы, график 2 прямую линию. Используя графики, определите: а) вид движения (равномерное или равноускоренное); б) начальные координаты тел. В какой момент времени и на каком расстоянии от начала координат тело 1 догонит тело 2?

§ **2.** Решение основной задачи механики для движения тела под действием силы тяжести

Основная задача механики состоит в определении положения (координаты) тела (материальной точки) в любой момент времени в инерциальной системе отсчёта при заданных начальных условиях.


Рассмотрим её решение для случая, когда движение тела считают *сво-бодным*, т. е. оно движется только под действием силы тяжести вблизи поверхности Земли. Будем считать, что влиянием воздуха на движение тела можно пренебречь.

На рис. 12, а-в приведены стробоскопические фотографии движения

тел, брошенных вертикально, горизонтально, под углом к горизонту с начальной скоростью \vec{v}_0 . При этом тела имеют одно и то же ускорение, сообщаемое постоянной силой тяжести и равное примерно $9.8~\text{M/c}^2$. Однако траектории тел различны и зависят от направления начальной скорости движения.

Для того чтобы решить основную задачу механики для свободного падения тел, необходимо знать координату тела и модуль его скорости.

Предположим, что тело, брошенное вертикально вверх с начальной скоростью \vec{v}_0 , движется равно-

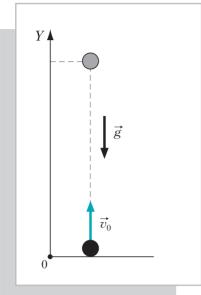
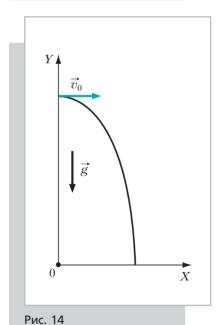



Рис. 13

ускоренно относительно поверхности Земли (рис. 13). Систему отсчёта свяжем с Землёй. За начало отсчёта координаты примем точку, из которой с поверхности Земли бросили тело. Момент броска тела будем считать началом отсчёта времени. Координатную ось У направим вертикально вверх.

Запишем уравнение для скорости равноускоренного прямолинейного движения тела в векторной форме:

$$\vec{v} = \vec{v}_0 + \vec{g} \cdot t. \tag{1}$$

Проекция ускорения свободного падения на ось Y отрицательна и равна $g_y = -g$. Проекция начальной скорости на эту ось положительна и равна $v_{0y} = v_0$. С учётом этого уравнение (1) имеет вид:

$$v_u = v_0 - g \cdot t$$
.

Найдём координату тела в любой момент времени:

$$y = y_0 + v_0 \cdot t - \frac{g \cdot t^2}{2}.$$

Пусть тело брошено так, что его начальная скорость \vec{v}_0 направлена горизонтально относительно поверхности Земли (рис. 14). Такое движение могут совершать, например, камень, брошенный в горизонтальном направлении, или грузы, оторвавшиеся от горизонтально летящего самолёта.

Найдём координату тела, брошенного в горизонтальном направлении относительно поверхности Земли, в любой момент времени. Систему отсчёта свяжем с Землёй. За начало отсчёта координаты примем точку, из которой было сброшено тело, а за начало отсчёта времени — момент броска тела.

Согласно методу координат движение тела по криволинейной траектории в вертикальной плоскости можно рассматривать как изменение координат по осям X и Y при равномерном или равноускоренном движении. Координатную ось X направим горизонтально, а ось Y — вертикально вверх.

Проекции $F_{\rm TX}$ силы тяжести и ускорения $a_{\rm x}$ на ось X равны нулю. Это означает, что вдоль оси X координата тела изменяется так же, как и при равномерном прямолинейном движении со скоростью $v_{0x} = v_0$. Уравнение координаты тела будет иметь вид:

$$x = v_0 \cdot t$$
.

Отсюда следует, что чем больше модуль начальной скорости, тем больше дальность полёта, т. е. максимальное значение координаты x тела в момент приземления.

Проекция $F_{\mathrm{r}y}$ силы тяжести на ось Y не равна нулю. Координата тела вдоль этой оси изменяется так же, как и при равноускоренном прямолинейном движении:

$$y = y_0 + \frac{g_y \cdot t^2}{2}.$$

Проекция v_{0y} начальной скорости на ось Y равна нулю, начальная координата тела равна y_0 . Проекция ускорения тела на эту ось: a_y = -g. Тогда уравнение координаты тела можно записать так:

$$y = y_0 - \frac{g \cdot t^2}{2}.$$

Выразим из него время падения тела, когда y=0: $t=\sqrt{\frac{2\cdot y_0}{g}}$. Из этого выражения следует, что время падения тела не зависит от начальной скоро-

сти. При любых значениях начальной скорости время падения с данной высоты (y_0) будет одним и тем же.

Предположим, что из некоторой точки O брошено тело с начальной скоростью \vec{v}_0 под углом α к горизонту (рис. 15). Систему отсчёта свяжем с Землёй. За начало отсчёта координат примем точку O, из которой броше-

Рис. 15